Rhenium Complexes Containing an q2-Thiocarbamoyl Group: Synthesis, Electrochemistry, and Crystal Structure of $[Re(S_2CNEt_2)_2(SCNEt_2)(PPh_3)]CIO_4$

Akio Ichimura,*^a Yoshiaki Yamamoto,^a Takayoshi Kajino,^a Toyokichi Kitagawa,^a Hiroo Kuma,**b** and Yoshihiko **Kus h i *b**

^a*Department of Chemistry, Faculty of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, 558, Japan* **^b***The Institute of Chemistry, College of General Education, Osaka University, Machikaneyama, Toyonaka, Osaka 560, Japan*

A new redox couple of rhenium complexes, $[Re^{III}(S_2CNEt_2)_{2}(SCNEt_2)[PPh_3]]$ and $[Re^{IV}(S_2CNEt_2)_{2}(SCNEt_2)(PPh_3)]CIO_4$ has been isolated and electrochemically characterized; the η^2 -co-ordination of the *N*, *N*-diethylthiocarbamoyl group in the latter has been confirmed by X -ray analysis.

The N,N-dialkylthiocarbamoyl ligand ($SCNR₂$), having car- excess of NaS₂CNEt₂ in acetone† produces $[Re^{III}(S₂-1)]$ bene character, co-ordinates to metals in three different $CNEt_2$ ₂($SCNEt_2$ ²)(PPh_3 ₂)] (1), which is readily oxidized by modes; σ^1 -C, η^2 -C, S, and μ -C, S.¹ Thiocarbamoyl complexes $K_3[Fe(CN)_6]$ to the cationic complex $[Re^{IV}(S_2CNEt_2)_2]$ have most often been synthesized by oxidative addition of $R₂NCSX₁$ ^{1,2} There are several reports, however, of conversion of a dithiocarbamate ligand into a thiocarbamoyl ligand.3 We report the first thiocarbamoyl rhenium complexes, synthesized directly by the latter method.

The reaction of *trans*- $[ReCl₃(CH₃CN)(PPh₃)₂]$ with a large

t Following the methods of Rowbottom and Wilkinson,4 we were attempting to obtain $\text{Re}(S_2 \text{CNE}t_2)$. In the event the main product was the complex (1) and $Re(S_2CNEt_2)_3$ was only a minor contaminant.

Figure 1. A view of the structure of the cation $[Re(S_2CNEt_2)]$ $(SCNEt₂)(PPh₃)$ ⁺. Selected bond lengths (Å) and angles ($°$): Re-P 2.476(7), Re-S(1) 2.426(7), Re-S(2) 2.425(7), Re-S(3) 2.449(8), Re-S(4) 2.475(8), Re-S(5) 2.398(7), Re-C(5) 2.098(23), C(5)-S(5) 1.605(24), C(5)-N(5) 1.297(36); P-Re-S(l) 170.4(3), P-Re-S(2) 98.7(2), P-Re-S(3) 88.9(3), P-Re-S(4) 91.2(3), P-Re-S(5) 89.0(3), P-Re-C(*5)* 97.4(6), **S(** 1)-Re-S(2) 71.8(2), **S(** 3)-Re-S(4) 69.5(3), C(5)-Re-S(5) 41.2(6), $S(5)$ -C(5)-N(5) 137.4(21).

(SCNEt,)(PPh,)]ClO, **(2).\$** Recrystallization from hot ethanol gave deep purple needle crystals.

The structure of the complex cation **(2)** is shown in Figure **l.Q** The co-ordination geometry of the rhenium atom is best described as a distorted pentagonal bipyramid. The triphenylphosphine ligand occupies an axial position and the η^2 -C, Sthiocarbamoyl group $[C(5)$ and $S(5)]$ is in an equatorial position. Both the dithiocarbamate ligands are bidentate; one provides equatorial $[S(2)]$ and apically co-ordinated $[S(1)]$ sulphur atoms and the other provides two equatorial sulphur atoms $[S(3)$ and $S(4)]$. The bond lengths and angles in both η^2 -SCNEt₂ and S₂CNEt₂ groups in **(2)** are normal.^{2,3}

$$
[Re^{III}(S_2CNEt_2)_2(SCNEt_2)(PPh_3)] \rightleftharpoons
$$

\n(1)
\n
$$
[Re^{IV}(S_2CNEt_2)_2(SCNEt_2)(PPh_3)]^+ + e^-
$$
 (i)

 \ddagger Satisfactory elemental analytical figures were obtained for (1) and **(2).** The i.r. (KBr disc) spectrum of **(2)** exhibits bands corresponding to **v** (C=N) of S_2 CNEt₂ at 1510 cm⁻¹ and **v** (C=N) of SCNEt₂ at 1570 $cm⁻¹$.

 $\text{\$}$ *Crystal data:* $C_{33}H_{45}CN_{3}O_{4}PRes_{5}$, $M = 960.68$, orthorhombic, space group $P2_12_12_1$, $a = 16.906(2)$, $b = 22.601(3)$, $c = 10.389(2)$ Å, U $= 3970(1)$ Å³, $Z = 4$, $D_c = 1.61$ g cm⁻³, μ (Cu- K_α) = 95.4 cm⁻¹, crystal dimensions $0.1 \times 0.1 \times 0.2$ mm. Data were collected at 20 °C with a Rigaku AFC-5 diffractometer using graphite monochromated Cu- K_{α} radiation; 3590 unique data were collected, of which 2636 with F_0 > $3\sigma(F_0)$ were used in the analysis. The structure was solved by Patterson techniques and refined to final *R* and R_w values of 0.076 and 0.069. All programs used were from the UNICS-Osaka package. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Figure 2. Sequential absorption spectra obtained during a spectropotentiostatic experiment on 2.1mm [Re(S₂CNEt₂)₂(SCNEt₂)^{(PPh₃)]} in 0.1 M tetrabutylammonium perchlorate/acetonitrile with a platinum optically transparent thin-layer electrode. Applied potentials in V are as follows: a, -0.485 ; b, -0.655 ; c, -0.685 ; d, -0.710 ; e, -0.735 ; f, -0.760 ; g, -0.785 ; h, -0.815 ; i, -0.985 .

Cyclic voltammetric measurements at a platinum disc electrode in acetonitrile containing 0.1 **M** tetrabutylammonium perchlorate as the supporting electrolyte show that **(1)** undergoes a reversible oxidation with $E'' = -0.74$ V, that **(2)** undergoes a reversible reduction with $E'' = -0.74$ V. Figure 2 illustrates the spectra recorded during the spectropotentiostatic5 oxidation of the complex **(1).** The Re111 complex has an absorption maximum at 390 nm with a shoulder at 472 nm; the Re^{IV} complex oxidized at -0.485 V exhibits maxima at 338,387, and 537 nm, consistent with those for the complex **(2).** An isosbestic point is observed at 500 nm, which indicates that a clean interconversion between the two components of the redox couple, **(1)** and **(2),** occurs without concomitant ligand loss, according to equation (i). These electrochemical results suggest that **(1)** retains the same geometry as **(2).**

Received, 5th April 1988; Corn. 81013201

References

- 1 W. K. Dean, *J. Organornet. Chem.,* 1980, 190,353, and references therein.
- 2 A. W. Gal, A. **F.** J. M. Van Der Ploeg, F. A. Vollenbroek, and W. Bosman, *J. Organornet. Chem.,* 1975, *96,* 123; W. K. Dean and D. G. Vanderveer, *ibid.,* 1978, 144, 65.
- 3 G. L. Miessler and L. **H.** Pignolet, *Znorg. Chem.,* 1979, 18, 210; R. **S.** Herrick, **S.** J. Nieter-Burgmayer, and J. L. Templeton, *J. Am. Chem. SOC.,* 1983, **105,** 2599; D. C. Brower, T. **L.** Tonker, J. R. Morrow, D. **S.** Rivers, and J. L. Templeton, *Organometallics,* 1986, 5,1093; L. Richard, J. Estienne, and R. Weiss, *Znorg. Chem.,* 1973, 12,2182; A. Mayr, G. A. McDermott, A. M. Dorries, W. C. Fultz, and A. **L.** Rheingold, J. *Am. Chem. SOC.,* 1986, 108, 310.
- 4 J. F. Rowbottom and G. Wilkinson, J. *Chem. SOC., Dalton Trans.,* 1972, 826.
- *⁵*W. R. Heineman, J. *Chem. Educ.,* 1983, **60,** 305; A. Ichimura, W. R. Heineman, and E. Deutsch, *Inorg. Chem.*, 1985, 24, 2134.

 \mathcal{T} All potentials reported here are with respect to E^{\prime} of the ferrocenium/ferrocene couple.